Fiber-optic isolator?

Do any of you know of a small (read this as short) fiber link I can use
on a long CAT-5E line to isolate two buildings' routers/hubs from ground-
potential variations that might cause wire-connected equipment to fail?
My idea is to run Cat-5 for the long line, then insert a Cat-5 to fiber
to Cat-5 link somewhere in the line as the electrical equivalent of a
"thermal break". My reasoning is that I already have the copper, and
fiber over 500' would be quite expensive. Correct me if I'm wrong.
I live in a lightning zone, and the two buildings are on different
transformers, so the potential differences could be large.
Thanks,
LLoyd
Reply to
Lloyd E. Sponenburgh
Loading thread data ...
On Wed, 06 Feb 2008 19:24:57 -0000, "Lloyd E. Sponenburgh" wrote in :
Reply to
John Navas
John Navas fired this volley in news: snipped-for-privacy@4ax.com:
Thanks. I've used Transtector plug-in protectors with good success.
I was looking for something more in the line of "non-sacrificial" equipment, though.
The cheapest multi-mode pre-terminated fiber I can find (with a pulling eye) is about $500 for a 400-foot run. Then two media-converters add another $150, or so.
I was hoping there was a "link in a box" arrangement for this very purpose.
John, have you used the Transtectors for this purpose? If so, how do they hold up to nearby cloud-to-ground or cloud-to-powerline strikes?
LLoyd
Reply to
Lloyd E. Sponenburgh
On Wed, 06 Feb 2008 20:54:05 -0000, "Lloyd E. Sponenburgh" wrote in :
Yes. I've not had one die, but then we don't get many thunderstorms around here.
Reply to
John Navas
They make media converters. They're CAT5 10/100 on one end and fiber on the other. You can span up to 1km with them. Allied Telesyn made some decent low-end ones. Check eBay for them. Then you'll need the fiber cabling, and have it terminated with the appropriate ends for your media converts (often either ST or SC connections). When you pull (or bury) the fiber consider getting a bundle with more than just one pair. If a fiber should break you'd want a spare in there. I'd pull at least a 4 strand.
-Bill Kearney
Reply to
Bill Kearney
"Bill Kearney" fired this volley in news:i4ednedtpqKnZDbanZ2dnUVZ snipped-for-privacy@speakeasy.net:
Yes, that's the other viable option. I haven't gleaned Ebay yet for supplies, but if I buy new 62.5/125um 4-strand cable with SC connectors and a pull ring, it'll cost over $500 for just the cable to go 400 feet.
It's more of a mental block, I guess, than anything else. I was hoping for a solution in a box, but when I look at rigging it up myself, then suddenly I cannot see the advantage of just running a short optical jumper -- I seem to lean to making the whole link out of fiber, and doing away with the copper entirely.
Oh, well... I do NOT want to have to replace the components every time we get a strike on the lines down our road. We pretty much have had to do that in the past (when on dial-up). Just like the high-speed link will be, our phones are common to both buildings, even though the power is on separate transformers; and every time one building took a hit, both ends got fried.
So I suppose I'll suck it up and go the optical/media converter route. (yet another $700 out of the construction budget)
LLoyd
Reply to
Lloyd E. Sponenburgh
On Fri, 08 Feb 2008 12:13:50 -0000, "Lloyd E. Sponenburgh" wrote in :
That's likely to happen in any event unless you install serious lightning protection.
Reply to
John Navas
John Navas fired this volley in news: snipped-for-privacy@4ax.com:
That, I can do. I installed medical business-management systems for 22 years here in Florida. The considerations for _guaranteed_ thrice-annual strikes on incoming service are costly, but do-able.
LLoyd
Reply to
Lloyd E. Sponenburgh
lightning protection is not just about the convertor....
note every convertor i have seen uses a power feed, so your isolation scheme has a couple of holes in it - a strike at either end will cause a spike on the ground voltage as the strike dissipates to earth.
i have also had RS422 equipment with part of the card vaporised rather than just not working when there was a strike on a road - our expensive shielded cable ran a couple of meters away and 1 m down........
golden rule for telecomms is that the expensive bit is digging the hole - put down multiple tubes so you have some future options (rule of thumb used to be £100 / m for public roads - on a private site things should be easier).
and since the fibre is inherently safe you can run a power cable down another tube in the same hole in the ground (or even the same one, but big cables tend to break small cables in the same duct when you pull them in) > > LLoyd
Reply to
stephen
First, routine to have direct strikes and no damage. Your telco connects its $multi-million computer to buildings, via overhead wires, all over town. Every thunderstorm typically creates maybe 100 surges - without damage. If every wire is earthed where entering the building, then lightning need not seek earth ground, destructively, via interior electronics.
Same solution was installed in FL's Orange County Emergency Response facilities. Protectors and isolation were not a solution:
formatting link
A first building may act as a lightning rod to find earth ground, destructively, via electronics in the second building. Solution was discussed recently. This problem and a simple, inexpensive solution that was standard even 100 years ago is in "Long cat5 run question" in alt.internet.wireless on 24 Jan 2008 at:
formatting link
Second, any protector destroyed by a surge was not providing protection. But failure (by being grossly undersized) gets myths to promote those effective and grossly overpriced solutions. The standard protection system means a direct lightning strike and resulting surge is not even known. Properly earthed protection is that routine and effective that nobody knows when it happens. Earthing defines quality of any surge protection 'system'; including essential short (low impedance) connections from each wire to a single point earth ground.
Third, a least expensive solution is also most effective. Only one component is always required in every surge protection system: earth ground. That requirement applies to every incoming wire - not just a Cat5 cable. Damage is created when a surge is permitted inside the building - permitted to find earth ground, destructively, inside that building. One path might be incoming on AC electric and outgoing to earth via that Cat 5 wire. Do not assume damage on a Cat 5 cable is due to a surge entering on Cat 5 wires. A surge could also be incoming on AC mains and outgoing to earth ground, destructively, via Cat 5 wires.
Reply to
w_tom
"stephen" fired this volley in news:7gfrj.3276$ snipped-for-privacy@newsfe3-gui.ntli.net:
Yes, thanks. I've got lots of experience "protecting" computers from lightning. I made a living doing (in part) that very thing for 22 years.
And thus, the optical "break". Each media converter would get its power from its end of the link -- by the very means you suggest below.
That might normally be, but I can have the trench for $125. There will be several pipes in the hole for convenience's sake.
Not if they're properly harnessed and lubricated, and the fill-factor is correct.
LLoyd
Reply to
Lloyd E. Sponenburgh
w_tom fired this volley in news:3a77abfd-3756-4375-8418- snipped-for-privacy@z17g2000hsg.googlegroups.com:
That was awfully didactic, but hardly accurate. As an example, we're in one of the "old copper" districts. Nothing is less than 15 years old. No fiber.
And Nothing (I mean zip, zero, nada, zilch) runs in the air. There isn't a telco pair on a pole within ten miles of here. It's ALL underground, for the obvious reasons.
Every wire? Surely you mean "every cable". What happens to your re- transmission rate when every wire is grounded?
Now, if instead you meant spark-gap protection -- why sure. I'm an old amateur radio guy, and have a wealth of experience setting up big dipoles and inverted-vee antennae, then leading the feedline into my house.
That would be pretty dangerous without a simple "cannot fail" system like a spark-gap arrestor.
(Hint... put your arrestor where you can visually inspect it frequently. Don't ask how I know )
Reply to
Lloyd E. Sponenburgh
Makes no difference whether wires are overhead or underground. Same problem needs the same solution. A professional's applicaiton note demonstrates even underground wires must have the 'less than 10 foot' connection to earth ground:
formatting link
Quality of earthing determines effectiveness of that protector (spark gap or devices specially made for your ethernet wire). Earthing, the length of that earting connection, and whether every other wire also connects short to that same earthing electrode determines whether damage can happen. That is the point in both Electrical Engineering Times articles and these others that apply to your situation:
formatting link
formatting link
formatting link
Accurately stated: every wire in every cable, even in the telco's CO, gets connected to earth ground. Please reread those posts with care. That spark gap 'grounds' the antenna wire. Clearly noted is that grounding is make by hardware (ie coax cable) or via a protector. That is what a protector does - make that grounding connection. Aagin, read both front page EE Times articles for further concepts.
Some examples to connect each ethernet wire to earth ground (equivalent to spark gaps):
formatting link
formatting link
formatting link
formatting link
Reply to
w_tom
Similar thread. While you are at it, read the replies.
. If using a protector, such as Transtector, at the entrance to each building, the ground connection should connect with a *short* wire to the earthing wire at the power service (not just an earthing electrode). An example of a long connection is in an IEEE guide on surges and surge protection
formatting link
pdf page 40. A long connection allows a large voltage between signal and power wires which shows up at computers connected to both. The NIST guru on surges, has written "the impedance of the grounding system to `true earth' is far less important than the integrity of the bonding of the various parts of the grounding system."
And contrary to w_?s beliefs, plug-in suppressors can be effective, as the IEEE guide shows. Plug-in suppressors work primarily by clamping the voltage on all wires (power and signal) to the common ground at the suppressor, not earthing. Note that power and signal (phone, Cat-5, ...) all have to go through the suppressor.
The problem with a link-in-a-box fiber optic isolator is that the Cat-5 converters on each side of the fiber need to be powered from the different buildings. Otherwise, if both of the converters are powered in building ?A? and a Cat-5 goes to building ?B? you have the same high voltage problem between buildings (unless the unit has very high voltage isolation between power and signal on one side.)
Reply to
bud--
bud-- fired this volley in news:65085$47b0c103$4213eb78$ snipped-for-privacy@DIALUPUSA.NET:
Exactly, and as I indicated in an earlier post.
Despite w's assertion to the otherwise, I have a more than just a bit of experience with this art. His failing to discriminate between true grounding and providing a low-impedance avalanche path to ground was what amused me.
He preaches loudly, but misses the simplest things.
LLoyd
Reply to
Lloyd E. Sponenburgh
Where did I say that? A low impedance path to ground is essential to protection. Earthing provides the protection. Also provides were sources that say same. Even Bud's 'post and paste' reply says the protectors he promotes do not provide that protection because the essential connection to earth ground is not provided.
The question was protecting ethernet ports from damage due to a connection between buildings. Provided was how that protection has been installed routinely for 100 years without the expense of fiber optics. If I, all telcos, broadcast stations, military facilities, etc do same as you are saying, then why/where the confusion?
Reply to
w_tom
. If you have a surge that produces only 1000A to earth and a rather low 10 ohms impedance to earth, the ground reference at the building will be raised 10,000V above ?absolute earth potential?. Keeping the ?ground? references for power, ethernet, phone, ... at the same relative potential is more important than the impedance to ground. That requires a *short* connection from signal entrance protectors to the earthing wire at the power service. (In US services, the neutral is bonded to ?ground? at the service - the power system ?ground? reference). Repeating - the NIST guru on surges, has written "the impedance of the grounding system to `true earth' is far less important than the integrity of the bonding of the various parts of the grounding system." If the only grounding electrode is a ground rod, generally 70% of the voltage drop away from the rod is in the first 3 feet. The voltage from ?ground? references in the building to the earth over 3 feet from the rod will be at least 7,000V.
If the entrance protector for ethernet wires is not near the power service, the voltage between ethernet and power wires can not reliably be kept low enough. The IEEE guide says a 10 ft ?ground? wire from phone entry protector to the common point is too long. The guide has an illustration of a 30 ft ?ground? wire from a cable entry block permitting 10,000V between cable and power wiring (pdf page 40). .
. w_ has a religious belief (immune from challenge) that surge protection must use earthing. Thus in his view plug-in suppressors (which are not well earthed) can not possibly work. The IEEE guide explains plug-in suppressors work by CLAMPING the voltage on all wires (signal and power) to the common ground at the suppressor. Plug-in suppressors do not work primarily by earthing. The guide explains earthing occurs elsewhere. (pdf page 40.)
Another guide on surges and protection, from the NIST
formatting link
says plug-in suppressors are effective.
w_?s cut and paste assertions ignore (and twist) what the IEEE and NIST guides say because the guides challenge w_?s religious belief in earthing.
And I do not promote any protection method - I only promote accurate information as opposed to w_?s misinformation. Read the authoritative sources - the IEEE and NIST guides.
Then read w_?s sources that say plug-in suppressors are NOT effective - oops, there aren?t any.
Reply to
bud--
That NIST guide says only earthing makes a protector effective. Every responsible source says same. Bud is promoting protectors that have no earthing. He 'cut and pastes' half truths hoping you ignore engineering facts. Even both front page Electrical Engineering Times articles bluntly define earthing as essential to protection. That NIST citation says same on page 6 (Adobe page 8):
Bud says earthing is not critical and essential. Profits are at risk if you learn what an effective protector does and what plug-in protectors cannot do. Ask Bud for a spec sheet from any plug-in manufacturer that claims protection. He cannot. That missing fact says defined an ineffective protector. A protector without earthing does not even claim to provide protection. It has Bud to promote myths.
NIST repeats what is essential on page 17:
What happens when earthing is missing or improperly installed? A Bud citation demonstrates damage because a protector is 1) too far from earth ground and 2) too close to appliances. Page 42 Figure 8 in:
formatting link
protector without earthing (as defined by both front page EE Times articles), means the protector earths a surge, 8000 volts destructively, through an adjacent TV. Just another source that demonstrates why proper earthing is essential for surge protection. A protector without that short connection to earth ground even creates appliance damage - 8000 volts destructively through the TV. Page 42 Figure 8 is blunt. Bud must obfuscate this reality. Effective protection earths every incoming wire where that cable enters the building.
This concept was understood even 100 years ago. Principle is stated bluntly by the IEEE where IEEE makes recommendations. IEEE Std 141 - The Red Book states:
That same concept is required in all communication circuits as defined by the telco industry Telcordia standards. Protection is always about earthing every wire where the cable enters a building. No earth ground means no effective protection.
Lloyd will connect two buildings. No fiber optic required today as was not needed 50 years ago. Routine is to connect buildings with no surge damage. But only if the incoming cable is properly earthed. Protectors that can make that earthing were posted earlier.
Qwest standards demand properly earthed protectors IF that cable exceeds 50 feet. If that interconnection is shorter and if both buildings don't share the same single point earth ground, then earthing at both ends is still recommended. Those who want even better protection would interconnect those two building earth grounds with a bare and buried ground wire. More reasons why fiber optic isolators are not needed.
A protector is only as effective as its earth ground. A protector without that short and dedicated earthing connection may even earth surges, destructively, through household appliances. Page 42 Figure 8. Should surge damage occur, then ham radio operators, 911 Emergency response facilities, commercial broadcast stations, military facilities, cell phone towers, telco COs (switching centers), etc locate faults in the earthing system. Professionals did same in Nebraska. Damage created, in part, because operators compromised earthing due to ignorance also promoted by Bud:
formatting link
"Proper Copper Grounding Systems Stops Lightning Damage at Nebraska FM Station" discusses another essential earthing inspection / correction. This post discusses secondary protection. Primary protection is defined by utility earthing (power poles, underground transformers, etc). What also makes primary protection effective? An example:
formatting link
All electronics contain effective protection. Internal protection that is overwhelmed if incoming wires are not properly earthed. Internal protection also compromised by a protector too far from earth ground and too close to electronics - Page 42 Figure 8. Only component always required in every surge protection system: each building needs a single point earth ground. Any solution without earthing can create surge damage as demonstrated in Nebraska and on Page 42 Figure 8. Bud fears you might learn this. Profits would be at risk. A routine solution that makes expensive fiber optics unnecessary.
If Bud's protectors provided effective protection, then manufacturer specs would make that claim. Bud was asked maybe 300 times to provide those specs. He never does. He cannot provide what never exists. Bud is promoting myths.
Reply to
w_tom
Both the NIST and IEEE guides say plug-in suppressors are effective. .
. I am promoting only accurate information against w_?s religious beliefs. .
. I hope you read reliable sources. I suggest the IEEE and NIST guides instead of w_?s cut and paste dogma. .
. What does the NIST guide really say about plug-in suppressors? They are "the easiest solution". .
. Poor w_ can?t understand me, or the IEEE guide, or the NIST guide because his religious belief in earthing is challenged . Regarding plug-in suppressors, the IEEE guide says earthing occurs elsewhere. Both the IEEE and NIST guides say earthing is important. .
. The illustration shows damage because a cable entry protector is 30 feet from the power system and surge current on the ?ground? wire from cable entry to power service produces 10,000V between cable and power wires. A lot of cable and phone installations have entry protectors distant from the power service. The illustration has nothing to do with ?too close to appliances?. .
. The illustration has a surge coming in on the cable service. There are 2 TVs, one is connected to a plug-in suppressor. The plug-in suppressor protects TV1, connected to it.
Without the plug-in suppressor at TV1 the surge voltage at TV2 is 10,000V. With the suppressor the voltage at TV2 is 8,000V. It is simply a *lie* that the plug-in suppressor at TV1 in any way contributes to the damage at TV2.
The point of the illustration for the IEEE, and anyone who can think, is "to protect TV2, a second multiport protector located at TV2 is required."
w_ says suppressors must only be at the power service. In this example a service panel protector would provide absolutely *NO* protection. The problem is the cable entry ?ground? wire is too long. The IEEE guide says in that case "the only effective way of protecting the equipment is to use a multiport [plug-in] protector."
Because plug-in suppressors violate w_'s religious belief in earthing he has to twist what the IEEE guide says about them. .
. The IEEE Emerald book ("IEEE Recommended Practice for Powering and Grounding Sensitive Electronic Equipment"), an IEEE standard, recognizes plug-in suppressors as an effective protection device. This is the most appropriate IEEE standard for protecting electronics.
The IEEE guide was peer reviewed within the IEEE and represents the views of the IEEE (pdf page 4). .
. The statement of religious belief in earthing #1. The IEEE guide says plug-in suppressors work primarily by clamping the voltage on all wires to the common ground at the suppressor, not earthing. .
I have agreed that protectors where the cable enters the building are a good idea. But the protectors will not have maximum effectiveness unless the entry protector is connected with a *short* ?ground? wire to the earthing wire at the power service. The cable entry ground block in the IEEE illustration above was connected with a 30 ft ?ground? wire and 10,000V developed between power and cable wires. .
. Statement of religious belief in earthing #2. Everyone is in favor of earthing. The question is whether plug-in suppressors work. Both the IEEE and NIST guides say plug-in suppressors are effective. Read the sources. There are 98,615,938 other web sites, including 13,843,032 by lunatics, and w_ can't find another lunatic that says plug-in suppressors are NOT effective. All you have is w_'s opinions based on his religious belief in earthing.
w_ has never answered simple questions: - Why do the only 2 examples of protection in the IEEE guide use plug-in suppressors? - Why does the NIST guide says plug-in suppressors are "the easiest solution"? - How would a service panel suppressor provide any protection in the IEEE example, pdf page 42? - Why does the IEEE Emerald book include plug-in suppressors as an effective surge protection device.
Bizarre claim - plug-in surge suppressors don't work Never any sources that say plug-in suppressors are NOT effective. Twists opposing sources to say the opposite of what they really say. Invents opinions and attributes them to opponents. Attempts to discredit opponents. w_ is a purveyor of junk science.
Reply to
bud--
On Thu, 14 Feb 2008 11:44:34 -0600, bud-- wrote in :
I agree.
Reply to
John Navas

Cabling-Design.com Forums website is not affiliated with any of the manufacturers or service providers discussed here. All logos and trade names are the property of their respective owners.