RSA: New Threats Make Traditional Antivirus Tools Ineffective

RSA: New threats could make traditional antivirus tools ineffective by Jaikumar Vijayan

February 06, 2007 (Computerworld) SAN FRANCISCO -- An emerging breed of sophisticated malware is raising doubts about the ability of traditional signature-based security software to fend off new viruses and worms, according to experts at this week's RSA security conference here.

Signature-based technologies are now "crumbling under the pressure of the number of attacks from cybercriminals," said Art Coviello, president of RSA Inc., the security division of EMC Corp. This year alone, about

200,000 virus variants are expected to be released, he said. At the same time, antivirus companies are, on average, at least two months behind in tracking malware. And "static" intrusion-detection systems can intercept only about 70% of new threats.

"Today, static security products are just security table stakes," Coviello said. "Tomorrow, they'll be a complete waste of money. Static solutions are not enough for dynamic threats."

What's needed instead are multilayered defenses -- and a more information-centric security model, Coviello said. "[Antivirus products] may soon be a waste of money, not because viruses and worms will go away," but because behavior-blocking and "collective intelligence" technologies will be the best way to effectively combat viruses, he said.

Unlike the low-variant, high-volume threats of the past, next-generation malware is designed explicitly to beat signature-based defenses by coming in low-volume, high-variant waves, said Amir Lev, president of Commtouch Software Ltd., an Israeli vendor whose virus-detection engines are widely used in several third-party products.

Until last year, most significant e-mail threats aimed for wide distribution of the same malicious code, Lev said. The goal in writing such code was to infect as many systems as possible before antivirus vendors could propagate a signature. Once a signature became available, such viruses were relatively easy to block.

New server-side polymorphic viruses threats like the recent Storm worm, however, contain a staggering number of distinct, low-volume and short-lived variants and are impossible to stop with a single signature, Lev said. Typically, such viruses are distributed in successive waves of attacks in which each variant tries to infect as many systems as possible and stops spreading before antivirus vendors have a chance to write a signature for it.

Storm had more than 40,000 distinct variants and was distributed in short, rapid-fire bursts of activity in an effort to overwhelm signature- and behavior-based antivirus engines, Lev said.

By the time a signature is released for one variant, it has often already stopped circulating and has been replaced by several other variants, he said. As a result, such viruses can infect a network and remain undetected by signature-based systems, he said. Examples of polymorphic, server-side viruses include Stration/Warezov and the Happy New Year virus.

Hackers have begun employing the same techniques with self-mutating Trojan programs, said Eugene Kaspersky, founder of security vendor Kaspersky Lab Inc. Such Trojans are planted on malicious Web sites and can mutate with every download, making them very hard to detect. The result: Each user who visits a Web site infected with such a Trojan can be infected with a different version of the same program.

Increasingly, hackers are using "special mutating technology" that allows them to inject random "junk" into Trojan program code before compiling and compressing it to create separate variants, each of which requires a separate signature to block it, Kaspersky said.

"We have to develop a special utility to extract this junk out of the malicious code, but it takes time" because each Trojan is a distinct variant, he said. So far, efforts to develop an automated tool for fighting such Trojans have proved "challenging," Kaspersky said.

An early example of a mutating Trojan was Swizzor, a Trojan download program discovered early last year that used a "packer" tool to encrypt the code and evade detection by signature-based tools. Swizzor repacked itself once per minute and recompiled itself once every hour to get past virus defenses.

The use of polymorphic code to mutate malware -- combined with encryption to evade detection -- are only a couple of the techniques being used by malicious hackers to evade signature-based tools.

Modern malware programs are also designed to split themselves into several co-dependent components once they are installed on a system, to make them harder to locate and remove. Each fragment or component keeps track of the others, and when an attempt is made to delete one component, the remaining fragment instantly respawns or reinstalls it.

One example of such malware is WinTools, which has been around since

2004 and installs a toolbar, along with three separate components, on infected systems. Attempts to remove any part of the malware cause the other parts to simply replace the deleted files and restart them. The fragmented nature of such code makes it harder to write removal scripts and to know whether all malicious code has actually been cleaned off a computer.

NOTE: For more telecom/internet/networking/computer news from the daily media, check out our feature 'Telecom Digest Extra' each day at

formatting link
. Hundreds of new articles daily. And, discuss this and other topics in our forum at
formatting link
formatting link
For more news and headlines, please go to:
formatting link

Reply to
Jaikumar Vijayan
Loading thread data ... Forums website is not affiliated with any of the manufacturers or service providers discussed here. All logos and trade names are the property of their respective owners.